Viewpoints on the Future of Humic Substances Research

Using Humic Fractions to Understand Natural Organic Matter Processes in Soil and Water: Selected Studies and Applications
by Olk et al., JEQ 48, 2019, 1633-1643
doi: doi:10.2134/jeq2019.03.0100 (Link to the article)

Abstract
Natural organic matter (NOM) plays key environmental roles in both aquatic and soil systems. A long-standing approach for evaluating NOM composition and activity is to extract soils with alkali solutions to obtain humic substances, namely humic acids (HA), and fulvic acids (FA), or to briefly expose isolated fractions of dissolved organic matter to alkali. Critics have claimed these methods create laboratory artifacts and are thus unsuitable for studying NOM behavior in field conditions. In response, we describe case studies in which humic fractions were analyzed to identify significant processes in environmental or agricultural issues. Specifically, humic fractions played a key role in maintaining toxic levels of arsenic (As) in drinking water supplies in South and Southeast Asia. Elsewhere, binding reactions of FA and HA with prions were shown to provide a plausible mechanism for variable persistence of prion infectivity across soil types. Humic substances were also shown to enhance iron (Fe) uptake by plants in solution culture and field conditions. Their specific binding sites for mercury (Hg) as determined in laboratory conditions enabled accurate modeling of soil Hg binding under varying conditions. A young HA fraction reproduced in controlled conditions the capacity of animal manure to maintain potassium (K) availability in strongly K-fixing field soils, leading to development of a commercially successful humic-K fertilizer. Humic fractions accurately represented NOM across multiple settings and research objectives while providing novel opportunities for advanced analyses. The study of humic fractions has helped resolve scientific and practical issues in aquatic and soil systems.

 

Environmental and Agricultural Relevance of Humic Fractions Extracted by Alkali from Soils and Natural Waters
by Olk et al., JEQ 48, 2019, 217-232
doi: 10.2134/jeq2019.02.0041 (Link to the article)

Abstract
To study the structure and function of soil organic matter, soil scientists have performed alkali extractions for soil humic acid (HA) and fulvic acid (FA) fractions for more than 200 years. Over the last few decades aquatic scientists have used similar fractions of dissolved organic matter, extracted by resin adsorption followed by alkali desorption. Critics have claimed that alkali-extractable fractions are laboratory artifacts, hence unsuitable for studying natural organic matter structure and function in field conditions. In response, this review first addresses specific conceptual concerns about humic fractions. Then we discuss several case studies in which HA and FA were extracted from soils, waters, and organic materials to address meaningful problems across diverse research settings. Specifically, one case study demonstrated the importance of humic substances for understanding transport and bioavailability of persistent organic pollutants. An understanding of metal binding sites in FA and HA proved essential to accurately model metal ion behavior in soil and water. In landscape-based studies, pesticides were preferentially bound to HA, reducing their mobility. Compost maturity and acceptability of other organic waste for land application were well evaluated by properties of HA extracted from these materials. A young humic fraction helped understand N cycling in paddy rice (Oryza sativa L.) soils, leading to improved rice management. The HA and FA fractions accurately represent natural organic matter across multiple environments, source materials, and research objectives. Studying them can help resolve important scientific and practical issues.